
www.manaraa.com

Object-oriented Database Management Systemsfor Construction of CASE Environments1Wolfgang Emmerich, Petr Kroha and Wilhelm Sch�aferDept. of Computer ScienceUniversity of Dortmund44221 DortmundGermany
GOODSTEP ESPRIT-III project No. 6115GOODSTEP Technical Report No. 3March 1994AbstractWe argue that a fully object-oriented database management system is a very suitable basis of everymodern CASE environment. We describe how the features provided by an OODBMS are exploitedto build a CASE tool or environment. We discuss especially problems concerning inter-documentconsistency constraints and multi-user support. We �nally sketch the features which are still missingin OODBMSs.1This report has been published in: V. Ma�rik and J. La�zanks�y and R. R. Wagner, editors, Databaseand Expert Systems Applications | Proc. of the 4th Int. Conf. DEXA '93, Prague, Czech Republic,volume 720 of Lecture Notes in Computer Science, pages 631{642. Springer, 1993.

www.manaraa.com

1 IntroductionThe enormous increase in the size of software and the reliability required from modern softwareintensive systems has focussed attention on languages and corresponding tools which do notonly support programming but also speci�cation, design, and documentation of software. Infact, speci�cation or design documents have become equally important as the �nal code in orderto check and verify correctness, completeness and reliability of a delivered software product.In addition, the industrial-scale production of software today requires teams of developers whoshould be supported by tools which organise access to a large amount of shared and frequentlychanging information. This information consists of the above mentioned documents for thevarious phases of the software production process. Examples for such documents are data-ow diagrams, state-transition diagrams, petri-nets, entity-relationship diagrams, and modulardesign descriptions.Tools supporting the construction of documents usually work in a syntax-directed mode, whichis the adequate support for those mostly graphical languages. In more detail, the user selectsa graphical element from a panel, places it on a drawing board and can possibly annotate itwith textual explanations. This mode especially enables the tool to check the correct syntacticconstruction during editing.Even for textual input, syntax-directed manipulation is useful, because it avoids a lot of typingerrors (templates for the concrete syntax of a language are generated automatically) and, morethan that, static semantic consistency can immediately be checked, e.g. the use of a variableis checked against its declaration and the user is immediately informed about errors.In general, syntax-directed tools support the syntactically and static semantically correct con-struction of documents which is often denoted as intra-document consistency.An integrated software development or CASE-environment is a collection of tools supportingvarious phases of the production process. It has two main additional features compared totools supporting the construction of single documents in a single language.The �rst feature is the possibility to handle inter-document consistency, e.g. a name of afunction or a parameter should be the same in the requirements speci�cation, in the inter-face de�nition of a module, in the design document and in the implementation. Even more,changing the name in one document can result in a propagation of this change into the otherdocuments concerned. If an environment maintains such inter-document dependencies, it isable to support an incremental intertwined development and maintenance of the documents.As a further illustration for the advantage of an incremental production process assume thata programmer may have detected an error in the code which is due to a wrong requirementsspeci�cation of a particular function. If then the speci�cation is changed, the environmentcould inform the user about all other places in all other documents which are a�ected by thischange. In contrast, doing such a small incremental change in a phase-oriented environmentis rather tedious, because such an environment is usually based on a complete transforma-tion of all documents concerned from one phase into the next one. For more details we referto [ELN+92].The second main feature of an environment is multi-user support which means documentchange in general and in particular the above sketched change propagation must be subjectto concurrency control and access rights de�ned for a team of developers, e.g. an automaticimmediate update of one document as a consequence of a change in another document can not1

www.manaraa.com

be performed in any case.The two features of an environment, i.e. maintaining inter-document dependencies and eveninter-document consistency and providing multi-user support demand complex-structured, per-sistent data and thus the use of a sophisticated database management system as a key archi-tectural component of a CASE-environment. In commercial CASE-environment developmentthis demand is often not (yet) taken very seriously, i.e. a lot of existing tools or environmentsare still based on rather rudimentary extensions of �le systems. This is, to our view, due to thelack of appropriate database management systems for CASE (cf. Section 5 and and [ESW93]).This paper argues that fully object-oriented database management systems (OODBMSs) likeO2 or GEMSTONE are the most appropriate ones and it will illustrate how an integrated CASEenvironment is built on top of such a database system, i.e. it will explain the construction of thedatabase scheme, and the exploitation of other database features like transaction management,and the performance capabilities o�ered by OODBMs. Thus, the next section will sketchthe concept of an integrated CASE environment, whereas section 3 describes the schemeconstruction in terms of a class hierarchy of an object-oriented data de�nition and manipulationlanguage. Section 4 explains how OODBMs have to be extended in order to fully meet therequirements of CASE environments. Section 5 sketches related work. Section 6 reports aboutthe implementations we used for evaluating the results described in this paper.2 The Concept of Integration in a CASE-EnvironmentSyntax-directed document manipulation and maintenance of inter-document consistency isbased conceptually on a graph-like representation scheme of a document. The graph (usuallycalled abstract syntax graph) describes the syntactic structure of each document [ELN+92,BCD+88]). Additional edges describe inter-document dependencies. Operations which areperformed by the user of a CASE-environment, are conceptually graph operations. Theyhave to be de�ned in a way that they respect static semantics and inter-document consistency.Note, that consistency is given by the de�nition of those operations. For example, an operationwhich changes the name of a function in a design document could be de�ned in such a way thatit performs the corresponding name change in all other documents concerned by traversingthe graph along the edges connecting various occurrences of a function name in di�erentdocuments.As an example for a graph scheme (without considering the de�nition of the operations) seeFig. 1. It sketches the dependencies within and between three documents which are technicaldocumentation, modular design and implementation of the module bodies. The solid arrowsrepresent the syntactic structure of each document, i.e. the so-called abstract syntax tree.This tree is usually turned into a graph by indicating inter- and intra-document dependenciesalso by (dashed) edges. Finally, node attributes describe values like e.g. names of identi�ers,modules etc.More generally speaking, a project-wide ASG is a directed attributed graph which conceptu-ally consists of a subgraph for each document. Each document subgraph in turn is spannedby a tree which is determined by the grammar of the language, the document is written in.Subtrees of this spanning-tree that are units for manipulation at the user-interface are calledincrements. An example of an increment of the design document depicted above is the proce-dure InitWindowManagerwith its identi�er and parameter list. Edges of this spanning-tree are2

www.manaraa.com

Documentation

Paragraph
List

TitleSection

Paragraph

Section
List

Value=’WindowManager’

ToNext

ToNext

ToSection
List ToFirst ToTitle

ToParagraph
List

...

ToFirst

ToLast

......
Documentation Subgraph

Value=’The Module ...’

Decl
Ident

ToIdent

Ident
List

Proc
Decl

ToFirst Decl
Ident

ToIdentToExport

ToImport ...

Name=’WindowManager’

Operation
List

Name=
’InitWindowManager’

Function
Module

ToFirst
Par
List

ToFirstToParList
...

Module Design Subgraph

Function
Module

Decl
Ident

ToIdent

Proc
Decl

ToFirst Decl
Ident

ToIdent

Name=’WindowManager’

Name=
’InitWindowManager’

ToProcs Operation
List

T
oN

ex
t

ToDecl

T
oI

m
pl

Par
List

ToParList ToFirst

ToStat

Proc
Decl

Decl
Ident

ToIdent

ToDecl

Par
List

ToFirst

ToStat

Name=’ComputePosition’

T
oN

ex
t ToParList

T
oI

m
pl

T
oI

m
pl

ToImport
...

... ...

...

...

...

...

...Module Implementation Subgraph

ToDoc

Figure 1: Intra- and inter-document consistencycalled syntactic edges. All other edges which consequently describe inter- and intra-documentdependencies between nodes are called non-syntactic edges.For the scope of this paper the given informal explanation of ASGs should do. A few languageshave been developed (e.g. PROGRESS developed in the IPSEN project [ELN+92]) whichallow to formally specify such rather complex graph schemes and especially the consistencypreserving operations on those schemes.The whole concept of integration is becoming more complicated if di�erent users work ondi�erent documents at the same time. Then the execution of a particular operation on thegraph by a particular user is subject to an access right which was granted to this user and allowsthe execution of the operation. In addition, automatic change propagation across documentboundaries have to be treated di�erently depending on the particular document, the ownerof the document, and the state of the document. For example, if one user works on somespeci�cation and another one started already to develop a corresponding implementation, thenchange propagation should only happen after both have �nished a major piece of their workand explicitly require the environment to renew document consistency (maybe only partlyautomatically). Thus the environment just has to keep track of inconsistencies for some timeand it may only display warnings to users about possible inconsistent states.In more sophisticated environments which however only exist as research prototypes so far,the concurrent manipulation of (integrated) documents is supported by versioning, i.e. usersmay change di�erent versions of the same document concurrently. Then strategies for handlingmerging versions have to be de�ned as well. In addition, versioning is, of course, already auseful concept even in the single user case. 3

www.manaraa.com

Finally, document representation and integration schemes as described undergo changes evenduring the construction of documents according to the de�ned scheme. For example, a usermay add new document dependencies which have not been anticipated or the syntax de�nitionof a language could change.3 OODBMSs in a Multi-User CASE Environment3.1 Scheme De�nition and GenerationThe objects stored in a database of a CASE environment represent user's documents, and,as we have argued, they have to be stored persistently in a structured way according to theirsyntax.Consequently, a database scheme for a CASE environment �rstly de�nes all possible syntacticalconstructions as classes according to the language de�nitions. The scheme de�nes additionalclasses for representing objects describing static semantics, e.g. a symbol table. Further ascheme de�nes syntactic and non-syntactic relationships among classes.The overall integrity constraint of a database which all tools must obey is that documentsubgraphs must represent syntactically correct documents in which static semantics and inter-document consistency constraints are only violated in a controlled way. To enforce this con-straint, we implement the constraints within the database scheme and exploit the fact thateach tool (as a database application) can only perform those modi�cations that are in-linewith the scheme de�ned.We now present how we de�ne the structure of abstract syntax graphs using an object-orientedscheme de�nition language. The common properties of nodes are de�ned within classes ofthe database scheme. Nodes are complex objects whose instance variables represent edges.Navigation along these edges is done by dereferencing instance variables. In case the numberof edges that may start at a node is not known in advance, object constructors such as listsor sets are used. For navigation purposes a query language is used then.The type-compatibility in the scheme should be checked at compile-time in order to achievesafety and better performance. The set of target nodes of a particular edge should therefore berestricted to those types of nodes which are allowed according to syntax and static semanticsof the language. Therefore, we exploit the type-system provided by typed OODBMSs (such asO2) to de�ne the types of instance variables.For further scheme simpli�cation, inheritance is used to de�ne common properties of nodessuch as outgoing syntactic or non-syntactic edges or attributes in a superclass only once. Inaddition, edges connect not always nodes of the same type. In case of alternative productionsin grammars such as A::=B|C, we have edges that may connect di�erent types of nodes. Wemust therefore allow that all edges which point to nodes of type A can also point to nodes oftype B or C. In the example, we declare the classes which represent node types B and C toinherit from the class derived from A. Exploiting polymorphism, we can then assign instancevariables of class A also values of class B and C.Integrity constraints are enforced by encapsulation, i.e. applications are not allowed to modifyinstance variables directly, but must use the methods de�ned. For example, terminal incrementclasses have a scan method which guarantees that values assigned to lexem attributes obey4

www.manaraa.com

class increment
type tuple(father:increment)
method
 public init(f:increment),
 public get_father:increment,
 public set_father(f:increment)
end;

class parameter_list inherit increment
type tuple(pl:list(parameter))
method
 public init(f:increment),
 add_parameter(par:parameter),
 delete_parameter(par:parameter),
 insert_parameter(par:parameter),
 parse(t:string;pl:parameter_list):boolean,
 unparse:string
end;

class identifier inherit increment
type tuple(value:string)
method
 public scan(t:string):boolean,
 public unparse:string
end;

class parameter inherit increment
type tuple(name:identifier,
 type:identifier)
method
 public expand_name(t:string):boolean,
 public expand_type(t:string):boolean,
 public change_name(t:string):boolean,
 public change_type(t:string):boolean,
 public parse(t:string,p:parameter):boolean,
 public unparse:string
end;

class cbv inherit parameter
method
 public parse(t:string,p:parameter):boolean,
 public unparse:string
end;

class cbv inherit parameter
method
 public parse(t:string,p:parameter):boolean,
 public unparse:string
end;Figure 2: Example of a Scheme De�nitionthe lexical syntax. In case of the non-syntactic edge, we can declare a method with which adeclaring identi�er can be changed. That method may additionally perform a propagation ofthe change along all non-syntactic edges to all objects that represent the identi�ers' usage.In the multi-user case, this method can additionally test whether the identi�ers are containedin documents which the user is allowed to modify or not. Depending on that decision themethod performs a change propagation or marks the identi�er as inconsistent. Hence, wede�ne multi-user support statically already in the scheme.The computations necessary for performing these methods, however, require computationalcompleteness of the scheme de�nition language.A major advantage of scheme construction for CASE environments is that normalised gram-mars [ELN+92] of the languages can be used for deriving the scheme partly automatically.Each terminal and non-terminal symbol of the grammar is translated into a class. An instancevariable of type string (for textual languages) used to store the value of lexems is attached toeach terminal class. Instance variables for storing syntactic edges are attached to each non-terminal class according to the production on which the respective non-terminal appears on theleft-hand side. The types of these instance variables are de�ned as the classes derived from thesymbols on the productions' right-hand side. Classes which represent optional increments aredeclared to inherit from a prede�ned class representing the properties of optional increments.Symbols that appear on the right-hand side of an alternative production are transformed intosubclasses of the class representing the symbol on the left-hand side. Productions like fAgare transformed into a class with an instance variable that is a list constructed from the classderived from the repeated symbol.Methods for scanning lexems are generated from regular expressions and are provided by eachterminal class. Methods for parsing and construction of the spanning-tree which represents anincrement are generated for each non-terminal class using parser-generation techniques. Meth-ods for unparsing (i.e. to compute the external representation of data structures) are attachedto all classes. Also, methods for expanding and collapsing increments which are frequentlyused in template-based editors can be attached to each non-terminal class.The algorithm sketched is the basis of our scheme generator. So far, the de�nition of staticsemantics, inter-document consistencies and multi-user support has to be added manually byde�ning the respective methods.Fig. 2 depicts an O2 schema for parameter lists in PASCAL. Instance variables and methodheads are depicted within solid boxes. Arrows denote inheritance.5

www.manaraa.com

3.2 Transaction ManagementWhen users start a CASE tool, they start a session (as part of a long-durating transaction),that lasts until they quit the tool. Such a session can not be performed within one conventionaldatabase transaction (with ACID properties) for three reasons: Firstly, other users would notbe able to use intermediate results produced within the session. Secondly, concurrency controlconicts would cause that other users would not be able to access those parts of their documentswhich have incoming or outgoing non-syntactic edges to the documents edited in the session.Finally, there is a likely chance to loose signi�cant human e�ort in case of hard- or softwarefailures.Instead, we split a session into a number of short conventional transactions with ACID proper-ties each of which executes the computations caused by a short user interaction. For example,changing a name of a type would be such an interaction which modi�es the lexem attributeand all attributes of objects that represent identi�ers that use the type. This strategy achievesthat �rstly, other users immediately see the e�ect of an interaction after transaction commit.Secondly, concurrency control conicts become fairly rare, because they occur only if two ses-sions access the same nodes within two concurrent short transactions. Finally, there is nodanger of loosing signi�cant e�ort.To implement the requirement of distributed access of users to documents, we can not executetools on the machine on which the projects' database is stored. We would overload the server,since tools opposed to standard applications perform signi�cant computation in order to createtextual or graphical representations of the ASG, to compute context-sensitive menus and todisplay them on the screen. Instead we can exploit the client/server architecture o�ered bymost OODBMSs in order to achieve process distribution.3.3 Performance CapabilitiesOODBMSs can only be used, if they achieve reasonable performance. To investigate this, wede�ned a software engineering application speci�c benchmark in order to evaluate the perfor-mance of OODBMSs. The Opus-Benchmark [ES93] accesses and modi�es an ASG composedof several hundred document subgraphs with a high number of non-syntactic edges in be-tween them. The benchmark simulates template based editing operations such as insertion,modi�cation and deletion of increments as well as analysis operations which require massivetraversals through the graph. The application of this benchmark to a few systems in particularan archetypical OODBMS like GemStone justi�es the statement that those systems performreasonably well with respect to software engineering applications. The description of the Gem-Stone implementation as well as a detailed discussion of the results is out of the scope of thispaper. Instead we only sketch the main results and refer to [EK92] for a detailed discussion.With respect to space, storing ASGs in GemStone for instance is excellent. It required onlyabout 2.5 times the space than storing a textual representation in a �le system.With respect to time, the response-time of tools increases with the number of transactionsexecuted per time unit. In single-user case (i.e. no concurrent transactions at all) we observedthat template-based editing operations perform in less than 100 milliseconds1 . Unparsingmedium-sized documents (up to 500 nodes) takes less than 500 milliseconds. Committing an1The times have been captured on a Sun SparcStation II with a medium-sized local SCSI disk.6

www.manaraa.com

optimistic transaction requires about 500 milliseconds. If incremental unparsing is chosen (i.e.only those parts of the textual document representations are redisplayed which have changed),interactions can be executed in about half a second and users are not going to recognise themas delays.In multi-user case, we observed that response times become unacceptably worse, if more thanfour users work intensively (i.e. without signi�cant thinking periods between successive inter-actions) on the same project-wide ASG.4 Necessary Extensions of object-oriented DBMSs4.1 Transaction ManagementA major reason for the bad performance in multi-user mode is that the database spendsunnecessary e�ort on achieving isolation of transactions. This is illustrated now.One major paradigm in software engineering is information hiding. This means that usersdesigning and implementing a large software system divide it into small modules with well de-�ned small interfaces. As an example consider class de�nitions in C++ shown to other userswhile method implementations are hidden. Conceptually, those parts that represent hiddendocuments or fragments thereof do not have any non-syntactic edges to nodes of other docu-ments. Usually, only one user modi�es a document at a time. Therefore concurrency controlconicts can only be caused by transactions which access nodes along such non-syntactic edges(in order to check or preserve inter-document consistency).Hence, in many transactions, there is no need for the DBMS to perform concurrency control.Tools can tell the DBMS at transaction start whether or not concurrency control is required.Note, that it is inappropriate to de�ne this on session level, as both transactions with andwithout concurrency control may have to be executed.Less time is needed if concurrency control is abandoned, because locking of objects or main-tenance of conict sets with conict detection at commit-time need not be done. Note, thatother transaction properties such as atomicity and durability must still be supported.4.2 Version ManagementVersioning of documents implies versioning of the corresponding subgraphs. As a prerequisiteto have the database management system maintaining versions and revisions of subgraphs,the scheme de�nition language must o�er means to de�ne the notion of subgraphs. This caneither be done at scheme generation time or at run-time. In the �rst case composite instancevariables which lead to component objects are distinguished from non-composite instancevariables which refer to objects [KBC+89]. We would then declare each instance variablewhich implements a syntactic edge as composite instance variable while non-syntactic edgesare implemented as non-composite instance variables. In the second case, objects are added to acontainer that implements the composite object. Note, that in both cases the requirement thatin a composite object, a dependent object is a component of only one composite object holds,because syntactic edges de�ne a spanning-tree in the subgraph. We have then managed toimplement document representing subgraphs as composite objects. The �rst solution sketched7

www.manaraa.com

must be supported by the scheme de�nition language (as in the ORION system) whereas thesecond solution can be added as a general class for composite objects without modifying theOODBMS.The operations which must be provided for versioning composite objects [Kro93] must o�ertransparent versioning (i.e. to establish a current version), derivation of new versions, mergingof alternate versions or retrieval of a particular version.4.3 Scheme EvolutionIn order to achieve changes of the syntax of documents, their static semantics and changesof inter-document consistency constraints during an ongoing software production process, thedatabase must be able to perform incremental scheme updates. As an example consider thede�nition of a new reviewing strategy for module interfaces, which requires that documents arenow annotated by the reviewers' name and have an additional relationship to a new documenttype "review report\.Implementing changes of documents' structure, requires to add, rename or delete classes, tochange the inheritance relation between classes, to add instance variables, to change theirnames and types, and to delete instance variables, and �nally to create, change and deletemethods. To cope with the above mentioned example, we have to add new classes which de�nethe structure of the review report and to add new instance variables for storing reviewers namesand the relationship to the review report to the class which represents module interfaces.In order to preserve the integrity of existing documents the objects of the database mustmigrate to the new scheme. In the above example, module interface de�nitions must neitherbe deleted, nor manually be transformed to the new scheme.The scheme evolution facilities available in current databases, however, do not fully cover thoserequirements. In GemStone for instance, objects are not a�ected by a scheme update, i.e. anobject can only be accessed with the scheme that was established when the object was created.In O2, objects must be manually transformed to conform to the new scheme.5 Related WorkA major piece of work in CASE tool construction during the last ten years focussed on toolgenerators (e.g. [RT88, BCD+88] which are similar to compiler-compilers in compiler con-struction. Those approaches do not consider to use a database system at all. All informationproduced during a working session with such a tool is just dumped into a �le after the endof a session. Those approaches provide no multi-user support. In addition, inter-documentconsistency is also a problem, because the generators only work for a particular languageand corresponding single documents and not for the de�nition and manipulation of documentdependencies, i.e. project-wide abstract syntax graphs.A few research projects in environment construction have built their own dedicated data-base systems like GRAS [LS88]. Those approaches, however, focus on an adequate persistentgraph representation of the abstract syntax graphs. Thus, they enable a quick manipulationof arbitrary large graphs by smart caching techniques. They do not adequately support multi-8

www.manaraa.com

user access. As a �rst step towards more sophisticated support, GRAS has been recentlyextended to deal with version management.Some of the available commercial CASE tools or environments respectively use relationaldatabases. They end up with the well-known performance problem of relational technologywhen being used for storing highly complex objects as abstract syntax graphs [Lin84].More recent research work has focussed on building dedicated software engineering databasesystems like PCTE/OMS [GMT87] or DAMOKLES [DGL86]. Unfortunately, these systemsare only strong in e�ciently supporting coarse-grained dependencies between documents. Theydo not adequately support the e�cient manipulation of such �ne-grained information.In general, none of the mentioned systems o�ers a fully object-oriented data de�nition and ma-nipulation language and thus lack the adequate modelling power for describing these complexstructured software engineering data.6 Implemented Systems and Further WorkWe started using object-oriented DBMSs in an experimental evaluation of their performance.In [DEL92] we describe a simple OMS benchmark we implemented on top of several struc-turally object-oriented databases (such as PCTE/OMS, Damokles, GRAS and Cadlab/OMS)as well as on GemStone and VBASE. It turned out that GemStone performed very well withsmall grained objects. Based on the results of that benchmark, we implemented the Opusbenchmark [ES93] for those systems that performed well with �ne-grained objects. Accordingto the results we obtained, we selected GemStone for our further developments. We thenported the commercially available OPUS environment which supports design and implemen-tation phase from GRAS to GemStone [Kam93]. Thus, we were able to change OPUS froma single-user system to a multi-user system which is called Groupie. Using this environment,we also experienced the limits concerning transaction throughput mentioned in section 3.3.Furthermore, we implemented a generator which automatically derives a set of C++ classesthat de�ne the common properties of increments from a grammar written in a normalisedBNF [Bud92]. The C++ classes are generated in the way sketched in Section 3.1. Theseclasses are then registered by GemStone's C++ Interface to become a part of the schemede�nition.We have just started implementing a generator which takes conceptual speci�cations of thesyntax, static semantics, inter-document consistency and multi-user support and generates adatabase scheme. This work is a part of our activity in the ESPRIT-III project GOODSTEP(General Object-Oriented Database for SofTware Engineering Processes). In this project, O2will be enhanced in a way that it overcomes the de�ciencies identi�ed in section 4.AcknowledgementsWe are grateful to all members of the GoodStep consortium for intensive discussion aboutOODBMSs in CASE environments. In particular, we appreciated the discussions with Prof.C. Ghezzi and Prof. A. Fugetta about basic transaction mechanisms required from anOODBMS. Initial ideas regarding versioning evolved during discussions with Dr. J. Madec,Prof. J. Welsh and Prof. C. Delobel. Dr. S. Even, Ms. S. Sachweh, Prof. R. Zicari and9

www.manaraa.com

Dr. R. de By provided us with deep insights in the topics of scheme updates and type safety.We enjoyed working with a number of students working on this subject. F. Buddrus did a greatjob when implementing the �rst scheme generator. When implementing Groupie, M. Kamp-mann showed what is feasible and discovered the limits in the use of current OODBMSs.References[BCD+88] P. Borras, D. Cl�ement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-cual. CENTAUR: the system. ACM SIGSOFT Software Engineering Notes,13(5):14{24, 1988. Proc. of the ACM SIGSOFT/SIGPLAN Software EngineeringSymposium on Practical Software Development Environments, Boston, Mass.[Bud92] F. Buddrus. Generierung von syntaxgesteuerten Werkzeugen auf der Basis einesobjektorientierten Datenbanksystems. Master's thesis, University of Dortmund,Dept. of Computer Science, June 1992.[DEL92] S. Dewal, W. Emmerich, and K. Lichtinghagen. A Decision Support Method forthe Selection of OMSs. In Proc. of the 2nd Int. Conf. on Systems Integration,Morristown, N.J., pages 32{40. IEEE Computer Society Press, 1992.[DGL86] K. R. Dittrich, W. Gotthard, and P. C. Lockemann. Damokles { a database systemfor software engineering environments. In R. Conradi, T. M. Didriksen, and D. H.Wanvik, editors, Proc. of an Int. Workshop on Advanced Programming Environ-ments, volume 244 of Lecture Notes in Computer Science, pages 353{371. Springer,1986.[EK92] W. Emmerich and M. Kampmann. The Merlin OMS Benchmark { De�nition,Implementations and Results. Technical Report 65, University of Dortmund, Dept.of Computer Science, Chair for Software Technology, 1992.[ELN+92] G. Engels, C. Lewerentz, M. Nagl, W. Sch�afer, and A. Sch�urr. Building Inte-grated Software Development Environments | Part 1: Tool Speci�cation. ACMTransactions on Software Engineering and Methodology, 1(2):135{167, 1992.[ES93] W. Emmerich and W. Sch�afer. Dedicated Object Management Benchmarks forSoftware Engineering Applications. In R. Welland, editor, Proc. of the SoftwareEngineering Environments '93, Reading, UK, pages 130{142. IEEE Computer So-ciety Press, 1993.[ESW93] W. Emmerich, W. Sch�afer, and J. Welsh. Databases for Software EngineeringEnvironments | The Goal has not yet been attained. In I. Sommerville andM. Paul, editors, Software Engineering ESEC '93 | Proc. of the 4th EuropeanSoftware Engineering Conference, Garmisch-Partenkirchen, Germany, volume 717of Lecture Notes in Computer Science, pages 145{162. Springer, 1993.[GMT87] F. Gallo, R. Minot, and I. Thomas. The object management system of PCTE asa software engineering database management system. ACM SIGPLAN NOTICES,22(1):12{15, 1987.[Kam93] M. Kampmann. Werkzeuge zur Unterst�utzung gruppenorientierter Arbeit beimSoftwareentwurf. Master's thesis, University of Dortmund, Dept. of ComputerScience, January 1993. 10

www.manaraa.com

[KBC+89] W. Kim, N. Ballou, H.-T. Chou, J. F. Garza, and D. Woelk. Features of theORION Object-Oriented Database. In W. Kim and F. H. Lochovsky, editors,Object-Oriented Concepts, Databases and Applications, pages 251{282. Addison-Wesley, 1989.[Kro93] P. Kroha. Objects and Databases. McGraw-Hill, 1993.[Lin84] M. A. Linton. Implementing Relational Views of Programs. ACM SIG-SOFT Software Engineering Notes, 9(3):132{140, 1984. Proc. of the ACM SIG-SOFT/SIGPLAN Software Engineering Symposium on Practical Software Devel-opment Environments, Pittsburgh, Penn.[LS88] C. Lewerentz and A. Sch�urr. GRAS, a management system for graph-like doc-uments. In Proc. of the 3rd Int. Conf. on Data and Knowledge Bases. MorganKaufmann, 1988.[RT88] T. W. Reps and T. Teitelbaum. The Synthesizer Generator { a system for con-structing language based editors. Springer, 1988.

11

